New Directions in Descriptive Set Theory

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New directions in descriptive set theory

§1. I will start with a quick definition of descriptive set theory: It is the study of the structure of definable sets and functions in separable completely metrizable spaces. Such spaces are usually called Polish spaces. Typical examples are Rn, Cn, (separable) Hilbert space and more generally all separable Banach spaces, the Cantor space 2N, the Baire space NN, the infinite symmetric group S∞...

متن کامل

Descriptive Set Theory Problem Set

Prove that any strictly monotone sequence (Uα)α<γ of open subsets of X has countable length, i.e. γ is countable. Hint: Use the same idea as in the proof of (a). (c) Show that every monotone sequence (Uα)α<ω1 open subsets of X eventually stabilizes, i.e. there is γ < ω1 such that for all α < ω1 with α ≥ γ, we have Uα = Uγ. Hint: Use the regularity of ω1. (d) Conclude that parts (a), (b) and (c)...

متن کامل

Some descriptive set theory

Definition 1.1. Let (X, τ) be a topological space. A subset D ⊆ X is called dense if D ∩O 6= ∅ for every nonempty open set O ⊆ X. X is called separable if X has a countable dense subset. X is called metrizable if there is a metric d on X such that the topology τ is the same as the topology induced by the metric. The metric is called complete if every Cauchy sequence converges in X. Finally, X i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of Symbolic Logic

سال: 1999

ISSN: 1079-8986,1943-5894

DOI: 10.2307/421088